Partenaires

Ampère

Supervisory authorities

CNRS Ecole Centrale de Lyon Université de Lyon Université Lyon 1 INSA de Lyon

Our partners

Ingénierie@Lyon



Search


Home > Thèses et HDR > Thèses en 2013

06/09/2013 : Daniela WOLTER FERREIRA

by Laurent Krähenbühl - published on , updated on

Daniela WOLTER FERREIRA soutient sa thèse le 06 septembre 2013 à 14h à l’Ecole Polytechnique de l’Université de São Paulo.

Titre :
Topics in design and analysis of transcutaneous energy transfer to ventricular assist devices

Jury :
Directeur de thèse : Luiz Lebensztajn (absent)
Président du Jury : José R. Cardoso, EP-USP
Examinateurs : Carlos A. F. Sartori (IPEN), Aron J. P. de Andrade (IDPC), Laurent Krähenbühl (Ampère), Florent Morel (Ampère)

Résumé :
This research studies a Transcutaneous Energy Transfer (TET) system which uses electromagnetic fields to transfer power from outside the body to an artificial organ (AO) in the body. It works like a high frequency transformer whereas the skin is part of the magnetic coupling between the primary (external) and secondary (internal) coils. Thus, the external coil (transmitter), which is excited by an oscillator circuit that transforms the continuous (DC) voltage to high-frequency alternating (AC) voltage, transfers energy to an internal system (receiver) containing a coil associated with a rectifier-regulator circuit to supply power to the AO and an internal rechargeable battery. Due to the diversity of research areas in TET systems, this thesis focused mainly on the TET coils, exploring few aspects of the electronic circuits which directly affect the proper design of the coils. Simulations of different configurations of coils (with different magnetic material types and different core geometrical dimensions) and different electrical parameters were performed via Finite Element Method (FEM) applications. Analyses of the results of these simulations with and without serial resonant capacitors (SRCs) observed the behavior of the coils considering the efficiency, regulation, specific absorption rate (SAR) and current density induced in the skin. These results also facilitated an optimization procedure using Kriging method without the need for new simulations via FEM. In parallel with the optimization procedure, different physical prototypes were created and tested to validate the simulations and explore the behavior of the coils. The temperature increase of the coils and the threshold limits of the electronic circuits were observed, suggesting new optimization strategies. Since the computation of the temperature is too complicated, the temperature rise was indirectly considered in this research by the use of a factor called "thermo factor", which represents the relationship between the dissipated power and the area of the coil. Moreover, since the AO requires a constant power, the load of the TET system was modeled as a variable resistance. This thesis proposed an algorithm to compute this value of the variable resistance directly in the FEM simulations. Thus, another optimization procedure was proposed with the new mentioned strategy by directly interacting with the FEM application. In this second case, homogenization methods were used to simplify the mesh without neglecting eddy current, proximity and skin effects, thus allowing accurate simulations of coils with thicker wire gauges and at higher frequencies. In the end, the results of both simulations were briefly discussed to evaluate configurations eligible for construction or assembly.

Télécharger le texte complet