Partenaires

Ampère

Nos tutelles

CNRS Ecole Centrale de Lyon Université de Lyon Université Lyon 1 INSA de Lyon

Nos partenaires

Ingénierie@Lyon



Rechercher


Accueil > Thèses et HDR > Thèses en 2014

30/06/2014 : Roberto MRAD

publié le , mis à jour le

Roberto MRAD soutient sa thèse le 30 juin 2014 à 10h - amphi 201 - ECL

Titre :

Conducted EMC Modeling and EMI Filter Design for Integrated Class-D Amplifiers and Power Converters

Jury :

  • Directeur de thèse : Christian VOLLAIRE
  • Co-encadrants : Florent MOREL ; Gaël PILLONET
  • Rapporteurs : Flavio CANAVERO ; Jean-Luc SCHANNEN
  • Examinateurs : Etienne SICARD
  • Invités : Angelo NAGARI . Bertrand LACOMBE

Résumé :

Switching power management circuits are widely used in battery powered embedded applications in order to increase their autonomy. In particular, for audio applications, Class-D amplifiers are a widespread industrial solution. These, have a similar architecture of a buck converter but having the audio signal as reference. The switching nature of these devices allows us to increase significantly the power efficiency compared to linear audio amplifiers without reducing the audio quality. However, because of the switching behavior, Class-D amplifiers have high levels of electromagnetic (EM) emissions which can disturb the surrounding electronics or might not comply with electromagnetic compatibility (EMC) standards. To overcome this problem much architecture appeared in the state of the art that reduces the emissions, however, this has never been enough to remove electromagnetic interference (EMI) filters. It is then useful to optimize these filters, thus, it has been set as the goal of this PhD thesis. The latter has been divided to four main axes which can be resumed by the following.

First, this work started by developing a frequency domain modeling method in order to simulate and predict the EMI of Class-D amplifiers in the final application. The method is based on system to block decomposition and impedance matrix modeling and manipulation. After providing all the theoretical background, the method has been validated on integrated differential Class-D amplifier. The experimental measurements have permitted to validate the method only up to 100MHz. However, this is sufficient to cover the conducted EMC frequency band.

Second, the EMI at the supply rails of Class-D amplifiers has been treated. As the battery is often the same power supply for all applications in an embedded system, an EMI filter or a decoupling capacitor is needed to prevent the noise coupling by common impedance. Designing this filter needs the knowledge of the battery impedance at the desired frequencies. Therefore the present work dealt also with measuring the high frequency impedance of a battery. Afterwards, an experimental validation has been carried on with a DC-DC converter and a Class-D amplifier.

The developed model allows a virtual test of the switching device in the final application. However, it is more useful if the model is able to help the system integrator in designing filters. Thus, third, the model has been implemented in an optimization loop based on a genetic algorithm in order to optimize the filter response, and also, reduce the additional power losses introduced by an EMI filter. The optimization search space has been limited to the components available on the market and the optimization result is given as component references of the optimal filter referring to the optimal solution found. This procedure has been validated experimentally.

Finally, EMI filters often are constituted by magnetic components such as ferrite beads or inductors with magnetic cores. Thus, introducing the EMI filter in the audio path, adds a nonlinear behavior in the audio frequency band. Designing a high quality EMI filter require taking into account this phenomenon and studying its impact of the original amplifier audio performance. Therefore, the Jiles-Atherton model for magnetic materials has been used for ferrite bead modeling. Hereafter, the impact on the time and frequency domain signals has been simulated and compared to measurements. Finally, the total harmonic distortion (THD) has been computed for different signal amplitudes and compared to the THD measured using an audio analyzer. Accurate results have been obtained on a wide range of signal amplitudes.

As a conclusion, this work aimed to design optimal EMI filters for Class-D amplifiers. Thus, we dealt with improving their EMI response, reducing their additional power losses and evaluating their impact on the audio quality.



Voir en ligne : Texte complet