Partenaires

Ampère

Supervisory authorities

CNRS Ecole Centrale de Lyon Université de Lyon Université Lyon 1 INSA de Lyon

Our partners

Ingénierie@Lyon



Search


Home > Thèses et HDR > Accreditation to supervise research

Marie-Ange RAULET - 09 février 2011

published on , updated on

Marie-Ange RAULET soutien son HDR intitulée

Contribution à la modélisation des matériaux magnétiques liés à leur environnement en génie électrique

le 09 février 2011 à 10h30 à l’amphithéâtre de Physique Nucléaire - Bâtiment Dirac - UCB Lyon1

devant le jury suivant :

  • BURAIS Noël, Professeur des Universités, Université Lyon 1
  • DULAR Patrick, Maître de Recherches, Département d’Electricité, Electronique et Informatique, Université de Liège, Belgique
  • KEDOUS-LEBOUC Afef, Directeur de Recherche au CNRS, Grenoble Electrical Engineering, Laboratory (Laboratoire G2Elab) Saint Martin d’Hères
  • LEFEVRE Yvan, Chargé de Recherche au CNRS, Laboratoire LAPLACE, INP-ENSEEIHT, Toulouse
  • MULTON Bernard, Professeur des Universités, Ecole Normale Supérieure de Cachan
  • PIRIOU Francis, Professeur des Universités, Université Lille 1

Résumé :

Les travaux de recherche présentés dans ce mémoire concernent la modélisation de lois statiques et dynamiques de matériaux dédiés à des applications de l’électrotechnique. Le titre de ce mémoire est volontairement plus général afin de montrer que ces travaux de recherche ne demandent qu’à être élargis. Les études traitées à ce jour portent sur la modélisation du comportement de matériaux magnétiques utilisés pour des dispositifs de l’électrotechnique. Une voie à venir sera de s’intéresser aux matériaux innovants et nouveaux dédiés aux applications de l’électronique de puissance et de prendre en compte les contraintes liées à leur environnement.
Depuis plusieurs décennies, une course est lancée vers l’accroissement des performances technologiques et énergétiques des dispositifs du domaine du génie électrique. La miniaturisation, l’intégration, l’efficacité énergétique ou le fonctionnement avec des conditions sévères d’alimentation (formes d’onde de formes quelconques, fréquences élevées) ou de température auxquels sont soumis les convertisseurs électromagnétiques ou composants magnétiques sont autant de défis qui placent les matériaux au cœur de la conception de nouveaux prototypes.
Un facteur apparu plus récemment qui résulte d’enjeux environnementaux et sociétaux tels que celui lié au développement durable vient renforcer la place occupée par les matériaux dans le domaine de l’ingénierie électrique.
Concevoir des matériaux nouveaux ou innovants et les adapter au mieux au sein d’applications afin d’augmenter leurs performances est l’enjeu relevé par les ingénieurs, concepteurs, industriels et chercheurs du domaine du génie électrique. Dans cet objectif, il est important de posséder un outil d’aide à la conception de prototypes capables à représenter de façon fiable et réaliste les matériaux.
Parmi les diverses approches de représentation de dispositifs électromagnétiques, la méthode basée sur du calcul de champs et celle fondée sur les Circuits Magnétiques Equivalents, constituent les méthodes les plus aptes à intégrer des lois réalistes de matériaux.
Nos travaux s’inscrivent dans le cadre de ces deux approches. L’intégration d’un modèle d’hystérésis statique dans un code de calcul de champs de type éléments finis 2D a fait l’objet de nos premières activités lors de l’initiation de l’équipe matériaux du laboratoire. Nous ne détaillerons pas ces activités, seules nos contributions visant à améliorer les lois de matériaux pour leur intégration dans une modélisation par Circuit Magnétique Equivalent (CME) sont présentées dans ce mémoire.
D’une façon générale, avant d’aborder l’implémentation de modèles de comportement de matériaux dans des codes de simulation de dispositifs électromagnétiques basés sur des approches diverses on doit se poser le problème de la définition de lois réalistes de matériaux.
C’est dans ce cadre que se situent les activités de ce mémoire, issues du fruit d’activités de recherche personnelles ou d’équipe, ou bien de l’encadrement de travaux de thèses ou encore du résultat de collaborations industrielles.
Notre cursus universitaire et notre environnement professionnel ont orienté nos activités vers des modélisations phénoménologiques des matériaux. Les modèles de lois de matériaux sur lesquels nous avons travaillés font intervenir des grandeurs macroscopiques et sont, par conséquent, transférables dans des outils de simulation employés en ingénierie ou en recherche.
La modélisation du comportement des matériaux se situe à plusieurs niveaux selon les conditions de sollicitation du matériau (excitation en statique ou en dynamique) et le degré de précision réclamé pour la représentation. Nous verrons que la définition d’une loi statique précise de comportement du matériau constitue un préalable indispensable à l’élaboration d’une loi dynamique réaliste.
Le premier chapitre de ce mémoire s’inscrit dans cet objectif et présente les outils que nous avons mis en place pour la représentation du comportement statique du matériau. Nos orientations ont deux visées : la première est de définir un modèle économe en paramètres, en gestion de données et temps de calcul avec l’idée sous-jacente d’une implémentation dans l’une ou l’autre approche de modélisation de dispositifs électromagnétiques ; la seconde privilégie la précision et la fiabilité du modèle. Nous verrons que concilier ces deux objectifs, constitue un réel défi.
Les deuxième et troisième chapitres présentent les différentes représentations de comportement dynamique de matériaux élaborées. Nous avons volontairement scindé l’approche globale (deuxième chapitre) de l’approche aux dérivées partielles (troisième chapitre) afin de mettre en évidence la complémentarité des deux panoplies d’outils élaborées pour la représentation comportementale dynamique des matériaux.
Le dernier chapitre s’intéresse à l’intégration des différents outils de représentation de matériaux mis en œuvre dans la modélisation de dispositifs électromagnétiques basée sur une approche par CME. L’apport des différents modèles de matériaux est mis en exergue au travers d’une application industrielle réelle.
Pour terminer ce mémoire, nous conclurons sur les apports et les limitations des différents modèles mis en œuvre, puis nous définirons les perspectives engagées et à venir.

View online : Texte complet