Hierarchical Performance Analysis of Uncertain Large Scale Systems

Khaled Laib

Anton Korniienko Gérard Scorletti Florent Morel

Laboratoire Ampère École Centrale de Lyon

October 20th, 2015

Khaled Laib et al. (ECL)

Hierarchical Robustness Analysis

Introduction

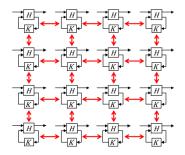
- Motivation
- Problem formulation
- Problem analysis
- Proposed approach
 - Robustness analysis and QC Propagation
 - Hierarchical approach
- 3 Application Example
- 4 Discussion
- 5 Conclusion and future work

A B K A B K

Context : PLL network

Large Scale Systems (LSS) : Phase Locked Loop (PLL) network

- PLL network to deliver clock signal to synchronous multi-core processors
- How to guarantee synchronization?

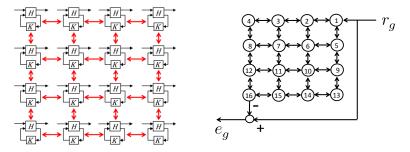


Motivation

Context : PLL network

Large Scale Systems (LSS) : Phase Locked Loop (PLL) network

- PLL network to deliver clock signal to synchronous multi-core processors
- How to guarantee synchronization?



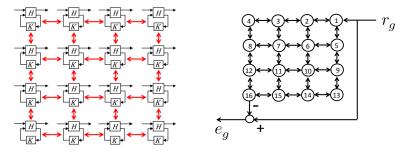
Introduce global synchronization error

Motivation

Context : PLL network

Large Scale Systems (LSS) : Phase Locked Loop (PLL) network

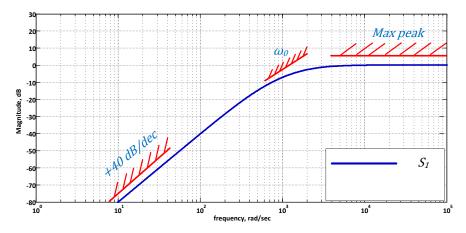
- PLL network to deliver clock signal to synchronous multi-core processors
- How to guarantee synchronization?



- Introduce global synchronization error
- Synchronization specifications (performance) are guaranteed if $T_{r_g \longrightarrow e_g}$ satisfies some frequency constraints

Context : Performance

Performance is expressed in frequency domain.

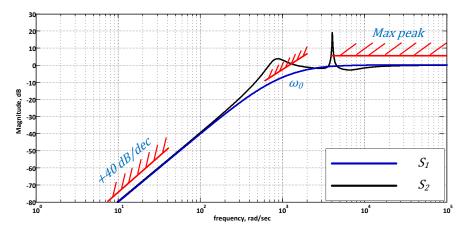


イロト イヨト イヨト イヨ

Motivation

Context : Performance

Performance is expressed in frequency domain.



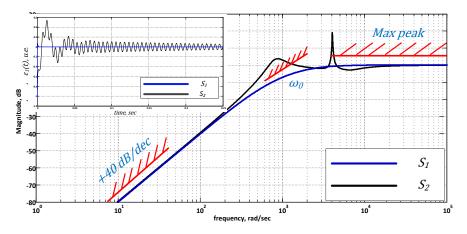
Khaled Laib et al. (ECL)

Oct 20th, 2015 4 / 30

イロト イヨト イヨト イヨ

Context : Performance

Performance is expressed in frequency domain.



・ロト ・回ト ・ヨト ・ヨト

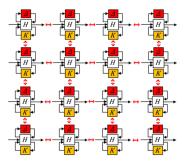
Active clock distribution network

Technological dispersions, modeling errors \implies uncertainties (Δ)

・ロト ・回ト ・ヨト ・ヨト

Active clock distribution network

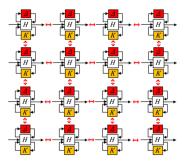
- **Technological dispersions, modeling errors** \implies **uncertainties** (Δ)
- Uncertain subsystems



• E •

Active clock distribution network

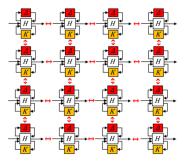
- **Technological dispersions, modeling errors** \implies **uncertainties** (Δ)
- Uncertain subsystems



Uncertain Network

Active clock distribution network

- **Technological dispersions, modeling errors** \implies **uncertainties** (Δ)
- Uncertain subsystems



- Uncertain Network
- Robustness analysis :

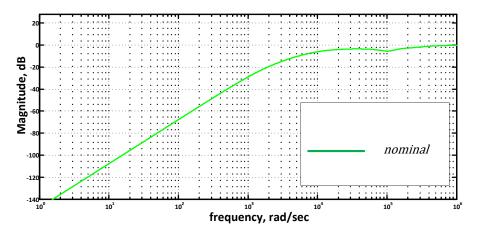
Perform the worst case robustness analysis for all the uncertainties Δ_i

Khaled Laib et al. (ECL)

Oct 20th, 2015 5 / 30

(日)

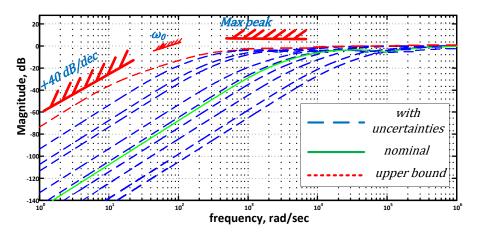
Context : Performance



<ロ> <四> <四> <三</p>

Motivation

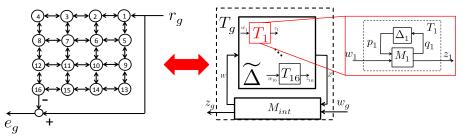
Context : Performance



Synchronization specifications (performance) are guaranteed if the upper bound satisfies the frequency constraints

PLL network Performance

16 PLLs mutually synchronized



- Two uncertain parameters for every PLL ⇒ 32 uncertain parameters
- Nowadays networks : 100 PLLs ⇒ 200 uncertain parameters ⇒ classic method is not applicable
- 16 PLL network to show classic method results

Objective Compute an upper bound on $||T_{r_g \rightarrow e_g}||$ for all the uncertainties

Large scale robustness analysis : two aspects problem

- Robustness analysis : IQC based analysis (input-output description)
- 2 Large scale : decomposition techniques from graph theory

Large scale robustness analysis : two aspects problem

- Robustness analysis : IQC based analysis (input-output description)
- 2 Large scale : decomposition techniques from graph theory

Direct application of IQC based analysis \implies important computation time

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

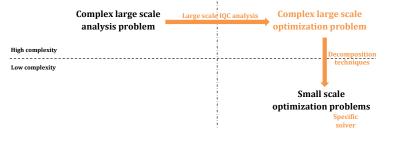
Problem analysis

Large scale robustness analysis : two aspects problem

- Robustness analysis : IQC based analysis (input-output description)
- 2 Large scale : decomposition techniques from graph theory

Direct application of IQC based analysis \implies important computation time

Few methods combining the two aspects : [Andersen et al., 2014] Modeling Optimization



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

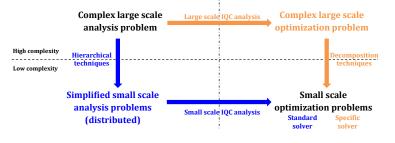
Problem analysis

Large scale robustness analysis : two aspects problem

- Robustness analysis : IQC based analysis (input-output description)
- 2 Large scale : decomposition techniques from graph theory

Direct application of IQC based analysis \implies important computation time

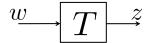
Few methods combining the two aspects : [Andersen et al., 2014] Modeling Optimization



Integral Quadratic Constraints (IQC)

Integral Quadratic Constraints (IQC)

$$\int_{-\infty}^{+\infty} \left(\begin{matrix} z(j\omega) \\ w(j\omega) \end{matrix} \right)^* \Phi_P(j\omega) \left(\begin{matrix} z(j\omega) \\ w(j\omega) \end{matrix} \right) d\omega \ge 0$$



Possibility to cover classical characterizations of performance

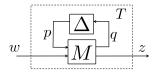
$$\int_{0}^{+\infty} \|z(t)\|_{2} dt \leq \gamma^{2} \int_{0}^{+\infty} \|w(t)\|_{2} dt \iff \int_{-\infty}^{+\infty} \begin{pmatrix} z(j\omega) \\ w(j\omega) \end{pmatrix}^{*} \begin{pmatrix} -I & 0 \\ 0 & \gamma^{2} \end{pmatrix} \begin{pmatrix} z(j\omega) \\ w(j\omega) \end{pmatrix} d\omega \geq 0$$
Passivity
$$\int_{0}^{+\infty} z(t)^{T} w(t) dt \geq 0 \iff \int_{-\infty}^{+\infty} \begin{pmatrix} z(j\omega) \\ w(j\omega) \end{pmatrix}^{*} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{pmatrix} z(j\omega) \\ w(j\omega) \end{pmatrix} d\omega \geq 0$$

Proposed approach

Linear Time Invariant Systems

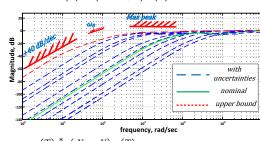
- \blacksquare $z(j\omega) = T(j\omega)w(j\omega)$ and QC based analysis
- Frequency domain : frequency response at ω_0

s.t.



Performance : compute an upper bound on the frequency response $(\bar{\sigma}(T) < \gamma)$ $\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} -I & 0 \\ 0 & \gamma^2 I \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0$

min γ



 $\begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0$ General performance $\begin{pmatrix} I \\ I \end{pmatrix}$

Khaled Laib et al. (ECL)

Oct 20th, 2015 10/30

QC for performance and uncertainty : Classical interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta} \implies QC \text{ of } T$$

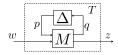


Image: A matrix

• E •

if and only if

1)
$$\begin{pmatrix} \Delta \\ I \end{pmatrix}^* \begin{pmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^* & \Phi_{22} \end{pmatrix} \begin{pmatrix} \Delta \\ I \end{pmatrix} \ge 0 \quad \forall \Delta \in \underline{\Delta} \implies QC \text{ of } \Delta$$

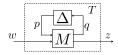
2) $\begin{pmatrix} M \\ I \end{pmatrix}^* \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^* & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ 0 & Y^* & 0 & Z \end{pmatrix} \begin{pmatrix} M \\ I \end{pmatrix} > 0$

QC for performance and uncertainty : Classical interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta} \implies QC \text{ of } T$$



if and only if

$$1) \begin{pmatrix} \Delta \\ I \end{pmatrix}^* \begin{pmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^* & \Phi_{22} \end{pmatrix} \begin{pmatrix} \Delta \\ I \end{pmatrix} \ge 0 \quad \forall \Delta \in \underline{\Delta} \implies QC \text{ of } \Delta$$
$$2) \begin{pmatrix} M \\ I \end{pmatrix}^* \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^* & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ 0 & Y^* & 0 & Z \end{pmatrix} \begin{pmatrix} M \\ I \end{pmatrix} > 0$$

Condition 1) : infinite dimensional

Khaled Laib et al. (ECL)

Hierarchical Robustness Analysis

Oct 20th, 2015 11 / 30

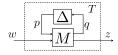
(a) (b) (c) (b)

QC for performance and uncertainty : Classical interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta} \implies QC \text{ of } T$$



if and only if

$$1) \begin{pmatrix} \Delta \\ I \end{pmatrix}^* \begin{pmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^* & \Phi_{22} \end{pmatrix} \begin{pmatrix} \Delta \\ I \end{pmatrix} \ge 0 \quad \forall \Delta \in \underline{\Delta} \implies QC \text{ of } \Delta$$
$$2) \begin{pmatrix} M \\ I \end{pmatrix}^* \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^* & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ 0 & Y^* & 0 & Z \end{pmatrix} \begin{pmatrix} M \\ I \end{pmatrix} > 0$$

Condition 1) : infinite dimensional

Parametrize Φ with Φ_{Δ} in 1) and test 2) \Longrightarrow Construct a 'basis' Φ_{Δ} for Φ

QC for performance and uncertainty : Classical interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

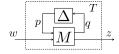
$$\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta} \implies QC \text{ of } T$$

if and only if \implies if (and only if) 1) $\exists \Phi \in \Phi_{\Delta} \implies QC \text{ of } \Delta$

$$2) \binom{M}{I}^{*} \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^{*} & 0\\ 0 & X & 0 & Y\\ -\Phi_{12} & 0 & -\Phi_{11} & 0\\ 0 & Y^{*} & 0 & Z \end{pmatrix} \binom{M}{I} > 0$$

Condition 1) : infinite dimensional

Parametrize Φ with Φ_{Δ} in 1) and test 2) \Longrightarrow Construct a 'basis' Φ_{Δ} for Φ



QC for performance and uncertainty : Classical interpretation

Theorem (Robust Performance Theorem)

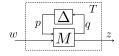
T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta} \implies \textbf{QC of } T$$

if and only if \implies if (and only if) 1) $\exists \Phi \in \Phi_{\Delta} \implies QC \text{ of } \Delta$

$$2) \binom{M}{I}^{*} \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^{*} & 0\\ 0 & X & 0 & Y\\ -\Phi_{12} & 0 & -\Phi_{11} & 0\\ 0 & Y^{*} & 0 & Z \end{pmatrix} \binom{M}{I} > 0$$

- Condition 1) : infinite dimensional
- Parametrize Φ with Φ_{Δ} in 1) and test 2) \Longrightarrow Construct a 'basis' Φ_{Δ} for Φ \Longrightarrow conservative (pessimist) results



QC for performance and uncertainty : Classical interpretation

Theorem (Robust Performance Theorem)

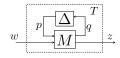
T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta} \implies QC \text{ of } T$$

if and only if \implies if (and only if) 1) $\exists \Phi \in \Phi_{\Delta} \implies QC \text{ of } \Delta$

$$2) \binom{M}{I}^{*} \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^{*} & 0\\ 0 & X & 0 & Y\\ -\Phi_{12} & 0 & -\Phi_{11} & 0\\ 0 & Y^{*} & 0 & Z \end{pmatrix} \binom{M}{I} > 0$$

- Condition 1) : infinite dimensional
- Parametrize Φ with Φ_{Δ} in 1) and test 2) \Longrightarrow Construct a 'basis' Φ_{Δ} for Φ \Longrightarrow conservative (pessimist) results
- Conservatism depends on Φ_Δ



QC for performance and uncertainty : New interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T\\I \end{pmatrix}^* \begin{pmatrix} X & Y\\Y^* & Z \end{pmatrix} \begin{pmatrix} T\\I \end{pmatrix} \geq 0 \quad \forall \ \Delta \in \underline{\Delta}$$

if (and only if)

2

$$f(and only if)$$

$$) \exists \Phi \in \Phi_{\Delta}$$

$$(M)^{*} \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^{*} & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ 0 & Y^{*} & 0 & Z \end{pmatrix} \begin{pmatrix} M \\ I \end{pmatrix} > 0 \qquad z_{p} \qquad M_{int} \qquad w_{g}$$

 T_1

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Image: Image:

 $T_g \xrightarrow{} T_1$

Proposed approach : Robust Performance Theorem (LTI systems)

QC for performance and uncertainty : New interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T\\I \end{pmatrix}^* \begin{pmatrix} X & Y\\Y^* & Z \end{pmatrix} \begin{pmatrix} T\\I \end{pmatrix} \geq 0 \quad \forall \ \Delta \in \underline{\Delta}$$

if (and only if)

1)
$$\exists \Phi \in \Phi_{\Delta}$$

2) $\binom{M}{I}^{*} \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^{*} & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ 0 & Y^{*} & 0 & Z \end{pmatrix} \binom{M}{I} > 0$

$$\sum_{j=1}^{U_{1}} \underbrace{\Delta_{int}}_{M_{int}} \underbrace{W_{j}}_{-M_{int}} \underbrace{$$

Local step : find simple QC for every T_i

Oct 20th, 2015 12/30

 T_1

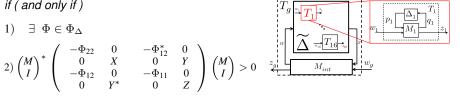
QC for performance and uncertainty : New interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T\\I \end{pmatrix}^* \begin{pmatrix} X & Y\\Y^* & Z \end{pmatrix} \begin{pmatrix} T\\I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta}$$

if (and only if)



Local step : find simple QC for every $T_i \implies$ reduce the complexity

QC for performance and uncertainty : New interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T\\I \end{pmatrix}^* \begin{pmatrix} X & Y\\Y^* & Z \end{pmatrix} \begin{pmatrix} T\\I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta}$$

if (and only if)

1)

2)

$$(and only if) \\ \exists \ \Phi \in \Phi_{\Delta} \\ \begin{pmatrix} M \\ I \end{pmatrix}^{*} \begin{pmatrix} -\Phi_{22} & 0 & -\Phi_{12}^{*} & 0 \\ 0 & X & 0 & Y \\ -\Phi_{12} & 0 & -\Phi_{11} & 0 \\ 0 & Y^{*} & 0 & Z \end{pmatrix} \begin{pmatrix} M \\ I \end{pmatrix} > 0 \quad z_{p_{1}}^{*} \qquad M_{int} \qquad w_{g}$$

Local step : find simple QC for every $T_i \implies$ reduce the complexity

 \blacksquare T_i are seen as uncertainty Δ_i

QC for performance and uncertainty : New interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T \\ I \end{pmatrix}^* \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} T \\ I \end{pmatrix} \ge 0 \quad \forall \ \Delta \in \underline{\Delta}$$

if (and only if)

- Local step : find simple QC for every $T_i \implies$ reduce the complexity
- \blacksquare T_i are seen as uncertainty Δ_i
- Global step : use local QC to find global QC

.

QC for performance and uncertainty : New interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T\\I \end{pmatrix}^* \begin{pmatrix} X & Y\\Y^* & Z \end{pmatrix} \begin{pmatrix} T\\I \end{pmatrix} \geq 0 \quad \forall \ \Delta \in \underline{\Delta}$$

if (and only if)

2

- Local step : find simple QC for every $T_i \implies$ reduce the complexity
- \blacksquare T_i are seen as uncertainty Δ_i
- Global step : use local QC to find global QC → conservative results

 $T_g \longrightarrow T_1$

QC for performance and uncertainty : New interpretation

Theorem (Robust Performance Theorem)

T is $\{X, Y, Z\}$ dissipative *i.e.*

$$\begin{pmatrix} T\\I \end{pmatrix}^* \begin{pmatrix} X & Y\\Y^* & Z \end{pmatrix} \begin{pmatrix} T\\I \end{pmatrix} \geq 0 \quad \forall \ \Delta \in \underline{\Delta}$$

if (and only if)

1`

- Local step : find simple QC for every $T_i \implies$ reduce the complexity
- \blacksquare T_i are seen as uncertainty Δ_i
- Global step : use local QC to find global QC \implies conservative results
 - \implies create a basis for QC of T_i (to use as Φ_{Δ} in global step)

 $T_g \square T$

Classical interpretation :

For given *X*, *Y* and *Z* find Φ from basis Φ_{Δ}

New interpretation :

- Find basis for *X*, *Y* and *Z* from given $\Phi \in \Phi_{\Delta}$
- Propagate the old basis into the new basis

 \implies QC propagation

Classical interpretation :

For given *X*, *Y* and *Z* find Φ from basis Φ_{Δ}

New interpretation :

Find basis for *X*, *Y* and *Z* from given $\Phi \in \Phi_{\Delta}$

Propagate the old basis into the new basis

 \implies QC propagation

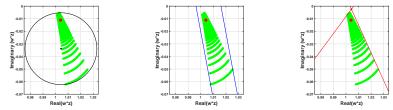
Difficulties

- Size : not too big/small
- Quality : describes the best the uncertain system
- Efficient computation : convex

Robustness Analysis : QC classes

Some classes of QC with geometric interpretations

- disc [Dinh et al., 2013]
- band [Dinh et al., 2014]
- cone [Laib et al., 2015]



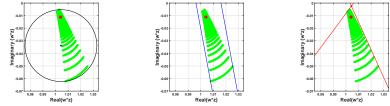
For given frequency ω_0 , Complex plane (Real and Imaginary) : • Nominal response and • Uncertain response

- Formulate as convex optimization (no graphical computation)
- Some physical interests : gain, phase, ...

Robustness Analysis : QC classes

Some classes of QC with geometric interpretations

- disc [Dinh et al., 2013]
- band [Dinh et al., 2014]
- cone [Laib et al., 2015]



For given frequency ω_0 , Complex plane (Real and Imaginary) : • Nominal response and • Uncertain response

- Formulate as convex optimization (no graphical computation)
- Some physical interests : gain, phase, ...
- Cone : Phase uncertainty information
 - The phase notion for Single-Input Single-Output (SISO) systems is well defined
 - For Multi-Input Multi-Output (MIMO) systems??

Khaled Laib et al. (ECL)

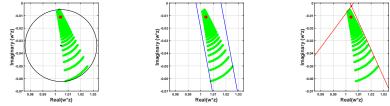
Hierarchical Robustness Analysis

Oct 20th, 2015 14 / 30

Robustness Analysis : QC classes

Some classes of QC with geometric interpretations

- disc [Dinh et al., 2013]
- band [Dinh et al., 2014]
- cone [Laib et al., 2015]



For given frequency ω_0 , Complex plane (Real and Imaginary) : • Nominal response and • Uncertain response

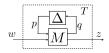
- Formulate as convex optimization (no graphical computation)
- Some physical interests : gain, phase, ...
- Cone : Phase uncertainty information
 - The phase notion for Single-Input Single-Output (SISO) systems is well defined
 - For Multi-Input Multi-Output (MIMO) systems ? ? → Numerical range

Khaled Laib et al. (ECL)

Hierarchical Robustness Analysis

Robustness Analysis : Numerical Range

For a given a frequency response Γ , at ω_0 , of a system T



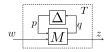
• The numerical range $\mathcal{N}(\Gamma)$

$$\mathcal{N}(\Gamma) = \{ w^* z \mid z = \Gamma w, w \in \mathbb{C}^{n_w} \text{ and } \|w\| = 1 \}$$

• E •

Robustness Analysis : Numerical Range

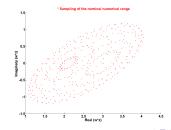
For a given a frequency response Γ , at ω_0 , of a system T



The numerical range $\mathcal{N}(\Gamma)$

$$\mathcal{N}(\Gamma) = \{ w^* z \mid z = \Gamma w, w \in \mathbb{C}^{n_w} \text{ and } \|w\| = 1 \}$$

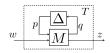
Certain numerical range



Oct 20th, 2015 15 / 30

Robustness Analysis : Numerical Range

E For a given a frequency response Γ , at ω_0 , of a system *T*

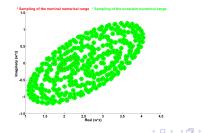


• The numerical range $\mathcal{N}(\Gamma)$

$$\mathcal{N}(\Gamma) = \{ w^* z \mid z = \Gamma w, w \in \mathbb{C}^{n_w} \text{ and } \|w\| = 1 \}$$

Certain numerical range

Uncertain numerical range



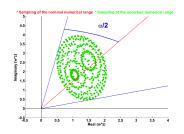
Oct 20th, 2015 15 / 30

Robustness Analysis : Cone QC [Laib et al., 2015]

Theorem

Given the frequency response $(at \omega_0)$ of an uncertain system T

Finding the smallest α :



• E •

Robustness Analysis : Cone QC [Laib et al., 2015]

Theorem

Given the frequency response $(at \omega_0)$ of an uncertain system T

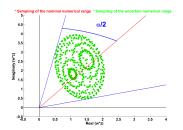


Image: A matrix

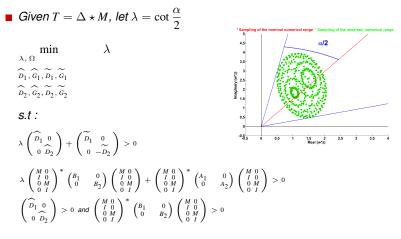
< 3 > <

Finding the smallest α :

- Quasiconvex optimisation problem
- LMI constraints

Robustness Analysis : Cone QC [Laib et al., 2015]

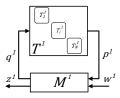
Theorem



⇒ Efficient tools to solve the problem

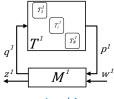
Khaled	Laib et	i al. (ECL)
--------	---------	---------	------

▶ ◀ Ē ▶ Ē ∽ ९ ୯ Oct 20th, 2015 16 / 30



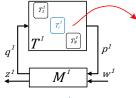
Level 1

<ロ> (日) (日) (日) (日) (日)



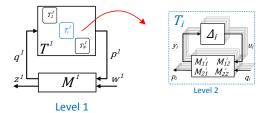
Level 1

Consider hierarchical structure of the system

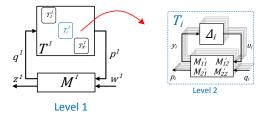


Level 1

Consider hierarchical structure of the system



1 Consider hierarchical structure of the system

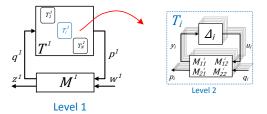


1 Consider hierarchical structure of the system

Find basis (QC description) for T_i with Robust Performance Theorem

< E

Image: A math a math

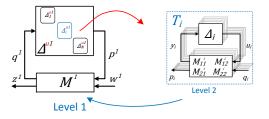


Consider hierarchical structure of the system

- Find basis (QC description) for T_i with Robust Performance Theorem
- Propagate this basis to the global level

< E

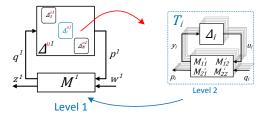
Image: A math a math



Consider hierarchical structure of the system

- Find basis (QC description) for T_i with Robust Performance Theorem
- Propagate this basis to the global level
- 2 For global hierarchical level, investigate the performance with Robust Performance Theorem

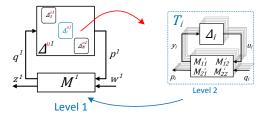
(a) (b) (c) (b)



Computation time is reduced however conservatism may appear

- robustness of feedbacks loops ⇒ simple set may be sufficient
- combination of several simple sets ⇒ decrease of the conservatism ⇒ increase of the computation time

• E •



Computation time is reduced however conservatism may appear

■ robustness of feedbacks loops ⇒ simple set may be sufficient

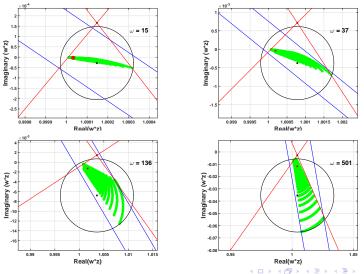
■ combination of several simple sets ⇒ decrease of the conservatism ⇒ increase of the computation time

⇒ trade-off conservatism/computation time

• 3 >

PLL network : Local Step

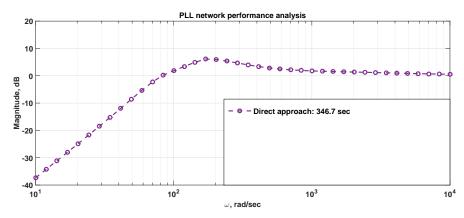
Characterize each PLL with QC with : disc, band and cone



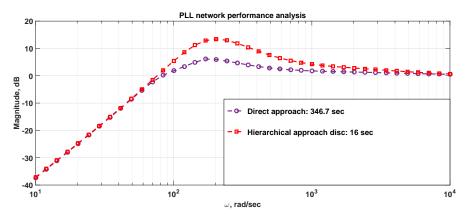
Khaled Laib et al. (ECL)

▲ ■ → ■ → Q <
 Oct 20th, 2015 19/30

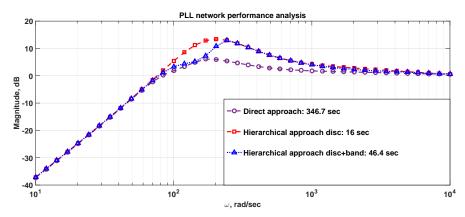
Compute an upper bound on $T_{r_g \rightarrow e_g}$ for all the uncertainties



Compute an upper bound on $T_{r_g \rightarrow e_g}$ for all the uncertainties



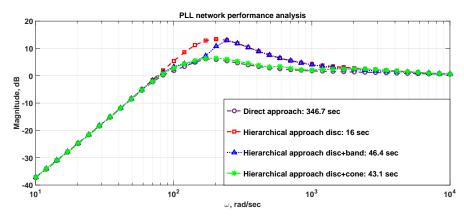
Compute an upper bound on $T_{r_g \rightarrow e_g}$ for all the uncertainties



Oct 20th, 2015 20 / 30

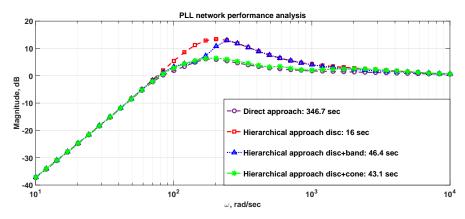
・ロト ・回ト ・ヨト ・ヨト

Compute an upper bound on $T_{r_g \rightarrow e_g}$ for all the uncertainties



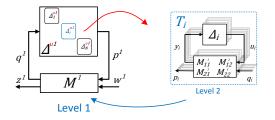
・ロト ・回ト ・ヨト ・ヨト

Compute an upper bound on $T_{r_g \rightarrow e_g}$ for all the uncertainties



 \implies Good choice of the basis elements

Hierarchical approach

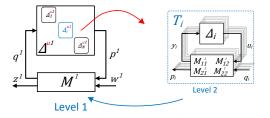


E Oct 20th, 2015 21/30

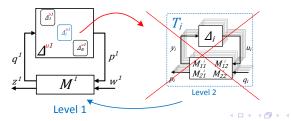
A 3 3

・ロ・・ 日本・ ・ 回・

Hierarchical approach



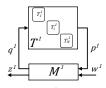
Special case : Direct approach

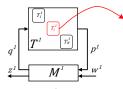


Khaled Laib et al. (ECL)

E Oct 20th, 2015 21/30

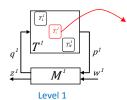
∃ ⊳ ъ

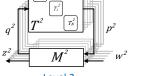




 T_1^2

General Hierarchical Approach



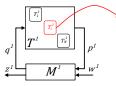


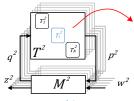
Level 2

Khaled Laib et al. (ECL)

æ Oct 20th, 2015 22/30

< ≣⇒



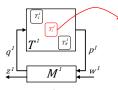


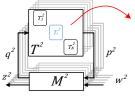
Level 2

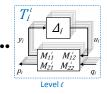
Khaled Laib et al. (ECL)

æ Oct 20th, 2015 22/30

< ≣⇒







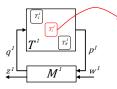
・ロト ・回ト ・ヨト

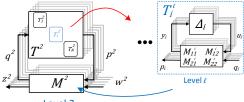
Level 1

Level 2

æ Oct 20th, 2015 22/30

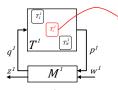
4 3 5

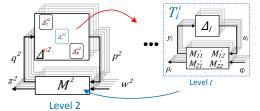




Level 2

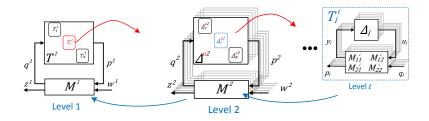
4 3 5





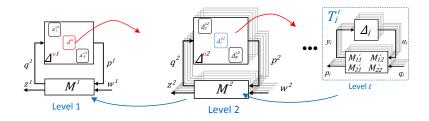
Level 1

4 3 5



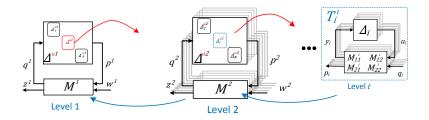
E Oct 20th, 2015 22/30

< E



E Oct 20th, 2015 22/30

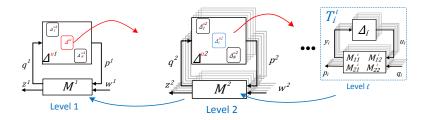
< E



Many degrees of freedom to handle the trade-off conservatism/computation time

∃ ⊳

General Hierarchical Approach



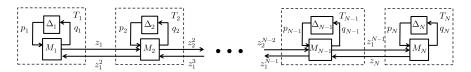
Many degrees of freedom to handle the trade-off conservatism/computation time

- Number of levels
- Number of T_i in each level
- Basis for Δ_i
- Basis for T_i in each level
- Parallel computing

∃ ⊳

Robust stability

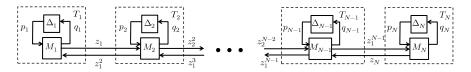
Network with N systems randomly generated [Andersen et al., 2014].

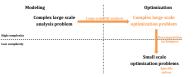


Oct 20th, 2015 23 / 30

Robust stability

Network with N systems randomly generated [Andersen et al., 2014].



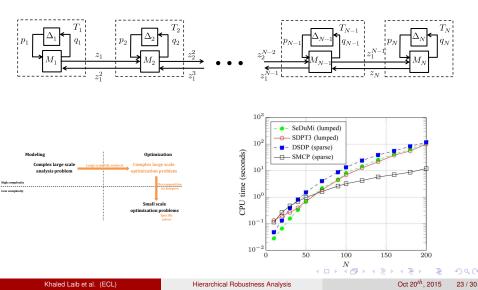


Khaled Laib et al. (ECL)	
----------------------	------	--

イロト イヨト イヨト イヨト

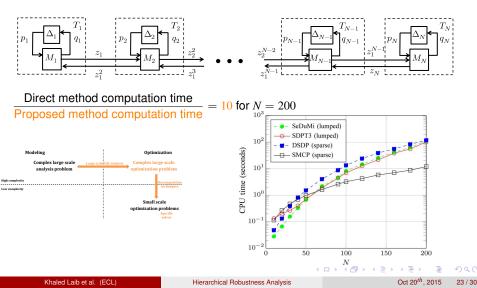
Robust stability

Network with N systems randomly generated [Andersen et al., 2014].



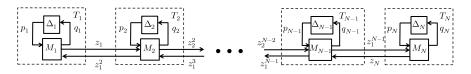
Robust stability

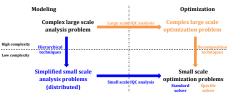
Network with N systems randomly generated [Andersen et al., 2014].



Robust stability

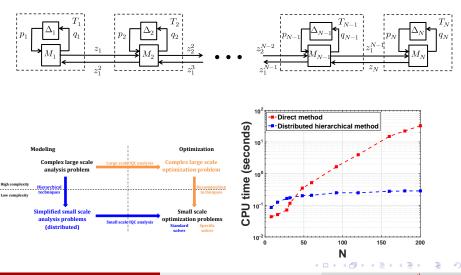
Network with N systems randomly generated [Andersen et al., 2014].





Robust stability

Network with N systems randomly generated [Andersen et al., 2014].



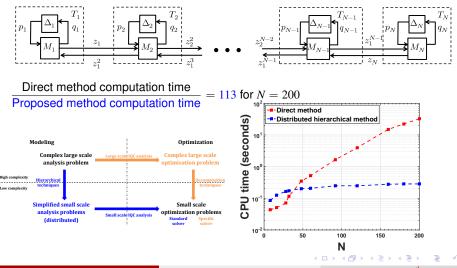
Khaled Laib et al. (ECL)

Hierarchical Robustness Analysis

Oct 20th, 2015 24 / 30

Robust stability

Network with N systems randomly generated [Andersen et al., 2014].



Khaled Laib et al. (ECL)

Hierarchical Robustness Analysis

Oct 20th, 2015 24 / 30

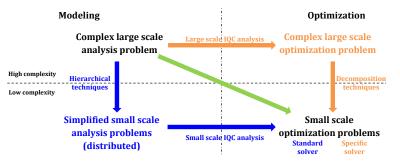
Conclusion

- Performance analysis of uncertain large scale systems
- Important computation time with direct method
- Exploit hierarchical structure using basis (QC) propagation
- General approach with degrees of freedom
- Reduce computation time with possible conservatism
- Trade-off conservatism/computation time

Perspectives

Perspectives

- Systematic decomposition technique using Graph Theory
- Combine hierarchical method with specific solvers



Thank you for your attention

Any Questions?

Khaled Laib et al. (ECL)

Hierarchical Robustness Analysis

 $\checkmark \equiv \diamond \equiv \circ \circ \circ \circ$ Oct 20th, 2015 27/30

Andersen, M., Pakazad, S., Hanson, A., and Rantzer, A. (2014).

Robust stability analysis of sparsely interconnected uncertain systems. *IEEE Transactions on Automatic Control*, 59(8) :2151–2156.

Dinh, M., Korniienko, A., and Scorletti, G. (2013).

Embedding of uncertainty propagation : application to hierarchical performance analysis. *IFAC Symposium on System, Structure and Control*, 5(1) :190–195.

Dinh, M., Korniienko, A., and Scorletti, G. (2014).

Convex hierarchicalrchical analysis for the performance of uncertain large scale systems. *IEEE Conference on Decision and Control*, pages 5979– 5984.

Laib, K., Korniienko, A., Scorletti, G., and Morel, F. (2015).

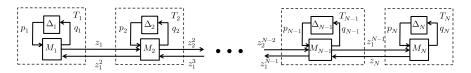
Phase IQC for the hierarchical performance analysis of uncertain large scale systems. *IEEE Conference on Decision and Control (to appear).*

Oct 20th, 2015 28 / 30

Appendix

Network Description of [Andersen et al., 2014]

Network with N systems randomly generated



Each system T_i is randomly generated with one parametric uncertainty

- Nominally ($\Delta_i = 0$) stable
- **Robustly** ($\Delta_i \neq 0$) stable

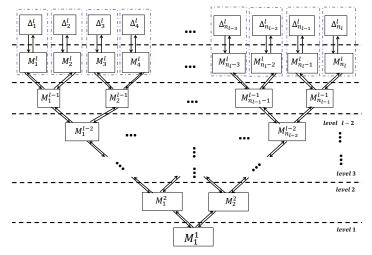
■ For *i* = 2, . . . , *N* − 1

- Each system T_i is MIMO (2 inputs/2 outputs)
- Each system T_i is connected to T_{i-1} and to T_{i+1}
- T₁ and T_N are SISO
- The network
 - Nominally stable
 - Robustly stable

Appendix

Network of [Andersen et al., 2014] : Used Hierarchical Approach

Multi level hierarchical approach



 \implies Parallel computing at each level

Khaled Laib et al. (ECL)

▲ ■ ● ■ ● ○ ○ ○
 Oct 20th, 2015 30 / 30