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C. Poignard∗†, P. Dular‡, L. Krähenbühl†, L. Nicolas†, and M. Schatzman∗
∗ICJ, UMR CNRS 5208, Lyon, F-69003; †Ampère, UMR CNRS 5005, Lyon, F-69003, Villeurbanne 69622, France

Université de Lyon, Lyon, F-69003, France
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Abstract— We provide a rigorous asymptotic method to com-
pute the electromagnetic fields in domains with thin layer. With
this method the influency of the membrane on the inner field is
replaced by an approximated boundary condition, while in the
thin layer, the approximated field is explicitely known. We give
error estimates, which validate our asymptotic.

I. INTRODUCTION

In this paper we present a rigorous asymptotic method to
compute electromagnetic fields in domains with thin layer.
The main idea of the asymptotics is to replace the thin
membrane either by an appropriate boundary condition or by
a transmission condition, depending on the problem. With our
approach, the influence of the membrane is known but we do
not have to mesh it. Moreover we give error estimates between
the total field and our approximation. In this proceeding we
describe how to build an approximated boundary condition,
the case of approximated transmission conditions will be
presented in the extended version.

II. HEURISTICS OF THE ASYMPTOTICS

In this section, we present the heuristics of the asymptotics
on a simple example: the dielectric formulation (1). Let Ω be a
domain composed of a material O surrounded by a thin layer
Oh with thickness h. Let γ0 be the complex permittivity of O
and γ1 those of Oh. For sake of simplicity, we suppose that
γ0 and γ1 are both constant, but our results are valid even if
γ0 is not a constant.

We denote by γ the function equal to γ0 in O and γ1 in Oh.
Consider the quasistatic approximation of voltage potentials:







∇ · (γ∇V ) = 0
∂V

∂n
= φ,

(1)

where φ is a boundary condition as regular as needed. The
idea is to write Laplace operator in local coordinate so that the
thin parameter h appears explicitly. Denote by ∆η,θ Laplace
operator written in (η, θ)-coordinates. We have:

∆η,θ =
1

1 + hηκ
∂η

(

1 + hηκ

h
∂η

)

+
1

1 + hηκ
∂θ

(

h

1 + hηκ
∂θ

)

,

(2)
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Fig. 1. The domain Ω. ε and σ are the permittivities and the conductivities
of the domain, ω is the pulsation and L is the diameter of Ω.

where (η, θ) belongs to (0, 1) × R/2πZ. We suppose that V
can be written as follows:

V = V0 + hV1 + · · · .

We replace V by its developpement in (2) and we identify the
terms of the same power of h. We refer to [4] or [3] for more
details.

III. RESULTS

In this part we give the first two terms of the asymptotic
expansion of the solution V of Problem (1). In the extended
version, we will give the results for Helmholtz equation and we
will also consider the case where the domain Ω is embedded
in an ambient medium.

A. Approximated Boundary Condition on ∂O

• Order 0.
V c

0 satisfies the following problem:
{

∇ · (γ0∇V c
0 ) = 0, in O,

∂nV c
0 = (γ1/γ0)f on ∂O.

(3)

• Order 1.
V c

1 satisfies:
{

∇ · (γ0∇V c
1 ) = 0, in O,

∂nV c
1 = (γ1/γ0)∂

2
t V c

0 on ∂Oc.
(4)



Denote by V c
app = V c

0 + hV c
1 . We have the following

estimate:

‖V c − V c
app‖H1(O) ≤ C

γ1

γ0
h2‖φ‖H4(∂Oh). (5)

We emphasize that the constant C depends uniquely on
geometric parameters of the materials. Inequality (5) estimates
the error between V c and V c

app and also the error of their
gradient. Observe that V c

app satisfies
{

∇ ·
(

γ0∇V c
app

)

= 0,

∂nV c
app = (γ1/γ0)f + (γ1/γ0)

(

h∂2
t V c

app − h2∂2
t V c

1

)

.

(6)

Let Ṽ c
app be the solution to

{

∇ ·
(

γ0∇Ṽ c
app

)

= 0, in O,

∂nṼ c
app − (γ1/γ0)h∂2

t Ṽ c
app = (γ1/γ0)f on ∂Oc,

(7)

then, using (5) we have:

‖V c − Ṽ c
app‖H1(O) ≤ C

γ1

γ0
h2‖φ‖H4(∂Oh). (8)

The boundary condition satisfied by Ṽ c
app is called approx-

imated boundary condition. Observe that this approximated
boundary condition is exactly the same as boundary condition
(10) of Krähenbühl and Muller [2]. Here, we validate the
result by an error estimate. Emphasize that we can perform
asymptotic expansion at any order n ≥ 0; in the extended
version, we will give general expression of the approximated
boundary condition.

In the thin layer, we have explicit formulae of V written in
local coordinates:

V m
0 = V c

0 |∂Oc
, V m

1 = ηϕ + V c
1 |∂Oc

.

Denote by V m
app = V m

0 + hV m
1 . We have the following

estimate:

‖V m − V m
app‖H1(Oh) ≤ Ch3/2‖φ‖H4(∂Oh). (9)

B. Numerical simulations

We perform calculus with GetDP [1] when Ω is an elongated
cell. In Fig. 2 we present the steady state potentials when the
thin layer is insulating.
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Fig. 2. Steady state potentials in an elongated cell with insulating membrane.

Asymptotics (3) et (7) give the approximated potential in
O without meshing the membrane.

In Fig. 3 we draw the error made by our asymptotics with
respect to the thickness h for a slightly conductive membrane.
Observe for instance that if h = 5.10−3 the error made by our

Fig. 3. Error made by our asymptotics.

method is around 10% at the order 0 and 1% at the order 1.

IV. CONCLUSION

We have presented in a simple case how to build rigorously
and with error estimate an approximated boundary condition
at the order 1 for the solution of steady state voltage potentials
in a domain with thin membrane. With our method we do not
have to mesh the membrane: the approximated field inside
the thin layer is known explicitly, and the cytoplasmic field is
solution to the dielectric formulation with the approximated
boundary condition. At the order 1, we recover the boundary
condition of Krähenbühl and Muller [2], and we give error
estimate, moreover, by our method, we can build approximated
boundary condition at any order, if the domain and the bound-
ary data are enough regular. This means that we could build
solutions, which approach the total potential with an error in
hn, for n as big as desired. This method has been generalized
to Helmholtz equation [5] and we except that we can apply it
to the vector wave equation. If the cell is embbed in an ambient
medium, we obtain appropriate transmission conditions on the
boundary of the cytoplasm [5]. We emphasize that in the thin
layer, the approximated potential is explicitely known in local
coordinates.
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cellules biologiques. PhD thesis, Nov 2006.

[4] C. Poignard, ”Rigorous Asymptotics For Steady State Voltage
Potentials in a Bidimensional Highly Contrasted Medium”,
http://hal.ccsd.cnrs.fr/ccsd-00083670.

[5] C. Poignard, ”Rigorous Asymptotics For The Electric Field in TM mode
at Mid-Frequency in a Bidimensional Medium With a Thin Layer”,
http://hal.ccsd.cnrs.fr/ccsd-00085930.


