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Characterization of inclusions in a
non-homogeneous GPR problem by neural networks
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Abstract— This paper addresses the problem of inverting
Ground Penetrating Radar (GPR) data, to find the buried
inclusions characteristics depth and radii considering a non-
homogenous host media by using neural networks (NN). The
aim is the detection and characterization of inclusions in concrete
structures. A novel asynchronous model is proposed to the NN
arrangement. The model is shown to outperform the traditional
approaches of using one NN with two outputs or two parallel
independent NN. Results are included to show the performance
of the new model.

Index Terms— Ground Penetrating Radar, Inverse Scattering
Problem, Neural Networks.

I. I NTRODUCTION

GROUND Penetrating Radar (GPR) is currently one of
the most commonly used methods to investigate concrete

structures due to its noninvasive nature and possibility ofusing
electromagnetic waves covering a wide-frequency spectrum.
However, the operation of GPR tools and the interpretation
of data often require trained personnel. Therefore, the useof
electromagnetic inversion techniques becomes important to de-
crease the interpretation time for a fully effective maintenance
and/or repair [1].

Over the past decade, various imaging or inversion tech-
niques have been developed to refocus the scattered signals
back to their true spatial location. Among them the Neural
Networks (NN) have proved to be a promising tehcnique [2].

The use of NN in the inverse scattering problem using
parallel networks and networks with multiple outputs for an
homogenous host medium was presented in [3] and [4]. In [4]
it is shown that both configurations could deliver reasonable
and very similar results. In this paper we considered the case
when the host media is non-homogenous and, surprisingly,
using a network with multiple outputs and parallel networks
were not adequate to estimate theradii of the inclusion. Thus,
to increase the prediction accuracy, we propose the use of
an asynchronous configuration for the neural networks. The
training is then done in two steps: (i) training one network
with the scattered wave to predict thedepth of the inclusion,
(ii) training one network with the scattered wave and the
predicteddepth to define the inclusionradii. Even though
it is a very simple modification in the training procedure a
significant improvement in the predictions of theradii was
observed.

This work was in part supported by CNPq (grant n◦ 140009/2004-3 and by
CAPES (grant n◦ 3421/04-0), Brazil.
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Fig. 1. Reflected wavefield from a buried target.

II. T HE INVERSE SCATTERING PROBLEM

Inverse scattering from buried objects is a subject of inter-
est in many applications related to ground penetrating radar
(GPR) prospecting, such as archaeological applications, police
inquiries, civil engineering and demining [1].

The problem can be stated as the determination of the spatial
map of the dielectric and/or conductive properties of a probed
region embedded in the soil starting from the measurement of
scattered field data gathered close to the air-soil interface. This
has the purpose to detect, locate and determine the extent of
the buried objects [5].

From the scattered wave, following the recommendations of
[4], the following input parameters were defined (see Fig. 1):
1) the peak amplitude of the reflected field (d1); 2) the delay
of the first reflected echo, calculated with respect to the time
of arrival, at the receiving point, of the direct field (d2); 3) a
measure of the duration of the scattered field (d3).

These variables alone have proven sufficient for the ho-
mogenous inverse scattering problem but they were insufficient
for the non-homogenous problem (in order to simulate a
more realistic concrete model, we randomly created subsurface
heterogeneities) treated in this paper.

III. T HE NEURAL NETWORK

In this paper we employ a Parallel Layer Perceptron (PLP)
[6][7], but, Multi-Layer Perceptrons and Adaptive Neuro
Fuzzy Inference Systems (ANFIS) have achieved similar re-
sults in our experiments.

In [4] were discussed two different configurations to solve
this inverse problem, a network with multiple outputs, Fig.
2(a), and independent networks in parallel, Fig. 2(b). The
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Fig. 2. Three neural network configurations employed in thispaper. (a)
One network used to calculate simultaneously thedepth and radii given
d1, d2 and d3, called here ConfigurationC1. (b) Two networks (C2)
applied in parallel to calculate independently thedepth and radii given
d1, d2 andd3. (c) The configuration proposed in this paper (C3) in which,
the depth is calculated usingd1, d2 andd3 and theradii are calculated in
a second step (asynchronously) using also the calculateddepth.

network with multiple outputs, called hereC1, calculates
simultaneously thedepth and radii given d1, d2 and d3.
The parallel networks, called hereC2, calculate independently
each output given the measured variablesd1, d2 and d3. In
our experiments it was noticed that having the information
of the depth, the prediction of theradii was substantially
improved. Considering this fact, in this paper we propose to
use an asynchronous training as presented in Fig. 2(c). This
configuration, called hereC3, first calculates the depth using
the measured variablesd1, d2 andd3 and then calculatesradii
usingd1, d2 andd3 and the predicteddepth.

IV. RESULTS

A typical two-dimensional GPR data is simulated using
two antennas located above the dielectric slab. The FDTD
scenario used for the NN trainning consisted of one buried
inclusion in concrete that was modeled with a mean relative
electrical permittivity value of 6 and standard deviation (sd)
0.15 according to the equation:

ǫr = 6 + sd · (random). (1)

The source type is a differentiated gaussian pulse with a center
frequency of F = 900 MHz and significant energy between
0.3 and 2 GHz. In order to control the numerical dispersion
and provide a good discretization for the inclusions the spatial
steps were chosen as∆x = ∆y = 6mm.

The NN has been trained with a set of different inclusions
examples, constructed by varying theradii in the range
[0.02÷ 0.1] m according to the ruleradii = 0.02+ i× 0.001,
i = 0, .., 80, with ǫr in the range[1 ÷ 10], according to the
rule ǫr = 1 + i × 1, i = 0, ..., 9, σ in the range[0 ÷ 4000]
S/m according to the ruleσ = 0 + i × 500, i = 0, ..., 8
anddepth in the range[0.05 ÷ 0.25] m according to the rule
depth = 0.05 + i × 0.025, i = 0, ..., 9 where75% of these
samples were used as a training set and25% to validate the
methodology.

The training of the NN took only 2.9 s on a AMD Atlhon
64 processor with 2.22 GHz, while the processing of the entire
test set took 17 ms.

To evaluate the performance of the techniques studied the
following error figure is used:

Err(p) =
|pt − pr|

pr

, (2)

wherep is the unknown variable (depth or radii), the sub-
script t indicates the real value of the variable, and subscript
r indicates the value reconstructed by the neural network. The
results for the configurationC1, C2 and C3 are presented
on Table I. As all the techniques apply similar mechanism
to reconstruct thedepth their error are also very similar, as
indicated in the second column of Table I. The main difference
is in the reconstruction of theradii for which the technique
proposed in this paper has shown an improvement of at least
7.1% when compared withC1 andC2.

TABLE I

RESULTS CONSIDERING THE THREE CONFIGURATIONS OF THENEURAL

NETWORKS STUDIED IN THIS PAPER.

Configuration Err(depth) Err(radii)
C1 5.8% 12.9%
C2 5.7% 13.4%
C3 5.7% 5.8%

V. CONCLUSIONS

This paper has presented a simple structure to improve
the characterization of inclusions using neural networks.An
asynchronous model was applied to train the network used
to reconstruct theradii and it has delivered much better
outcomes when compared with the standard techniques. We
believe that this asynchronous model can be extended to a
recursive one, in such a way that the predictedradii can be
used to improve the prediction of thedepth and so on.
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