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Abstract— This paper addresses the problem of inverting

Ground Penetrating Radar (GPR) data, to find the buried 0.025} <——Amplitude
inclusions characteristics depth and radii considering a non- First echo delay
homogenous host media by using neural networks (NN). The g
aim is the detection and characterization of inclusions inoncrete
structures. A novel asynchronous model is proposed to the NN o 0
arrangement. The model is shown to outperform the traditioral .2
approaches of using one NN with two outputs or two parallel §
independent NN. Results are included to show the performarc  ©
of the new model. -0.025f Duration of the scattered field
Index Terms— Ground Penetrating Radar, Inverse Scattering 0 1 2 3 4 5 6 7
Problem, Neural Networks. Time [ns]
I. INTRODUCTION Fig. 1. Reflected wavefield from a buried target.

ROUND Penetrating Radar (GPR) is currently one of

the most commonly used methods to investigate concrete
structures due to its noninvasive nature and possibilitysaig ) _ . ) _ _
electromagnetic waves covering a wide-frequency spectrum'”_"erse scatterl_ng _from buried objects is a subject_of inter
However, the operation of GPR tools and the interpretati§igt N many applications related to ground penetratingrrada
of data often require trained personnel. Therefore, theotise(GPR) Prospecting, such as archaeological applicatiolse

electromagnetic inversion techniques becomes importate¢ INduiries, civil engineering and demining [1]. _
crease the interpretation time for a fully effective mairstece The problem can be stated as the determination of the spatial
and/or repair [1]. map of the dielectric and/or conductive properties of a ptbb

Over the past decade, various imaging or inversion tecfggion embedded in the soil starting from the measurement of
niques have been developed to refocus the scattered sigiigiitered field data gathered close to the air-soil interfabis
back to their true spatial location. Among them the NeurdS the purpose to detect, locate and determine the extent of

Networks (NN) have proved to be a promising tehcnique [2f1€ Puried objects [5]. _ _
The use of NN in the inverse scattering problem usin From the scattered wave, following the recommendations of

parallel networks and networks with multiple outputs for aitl» the following input parameters were defined (see Fig. 1)
homogenous host medium was presented in [3] and [4]. In [113 the peak amplitude of the reflected f_|etdx 2) the delay_
it is shown that both configurations could deliver reasomab thg first reflected ep_ho, ca]culated W'th resp_ect fo thetim
and very similar results. In this paper we considered the c4¥ arrival, at the receiving point, of the direct fieldy{; 3) a
when the host media is non-homogenous and, surprisinfeasure of the duration of the scattered fielg)(
using a network with multiple outputs and parallel networks These variables alone have proven sufficient for the ho-
were not adequate to estimate thelii of the inclusion. Thus, Mogenous inverse scattering problem but they were inseffiici
to increase the prediction accuracy, we propose the usef%rf the n_on_—homogenous problem (in order to simulate a
an asynchronous configuration for the neural networks. TH'e realistic concrete model, we randomly created suaserf
training is then done in two steps: (i) training one networReterogeneities) treated in this paper.
with the scattered wave to predict thepth of the inclusion,
(i) training one network with the scattered wave and the lIl. THE NEURAL NETWORK
predicteddepth to define the inclusiomradii. Even though  |n this paper we employ a Parallel Layer Perceptron (PLP)
it is a very simple modification in the training procedure §][7], but, Multi-Layer Perceptrons and Adaptive Neuro
significant improvement in the predictions of thedii was Fuzzy Inference Systems (ANFIS) have achieved similar re-
observed. sults in our experiments.

In [4] were discussed two different configurations to solve

This work was in part supported by CNPq (grant 140009/2004-3 and by thiS inverse problem, a network with multiple outputs, Fig.
CAPES (grant n 3421/04-0), Brazil. 2(a), and independent networks in parallel, Fig. 2(b). The

Il. THE INVERSE SCATTERING PROBLEM
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d4 | depth The training of the NN took only 2.9 s on a AMD Atlhon
dy NN ) 64 processor with 2.22 GHz, while the processing of the entir
ds | radii ds test set took 17 ms.
(@) d NN depth To gvaluate the pe_rformance of the techniques studied the
d4 ds following error figure is used:
d |depth —
| NN Brr(p) = 2, @
ds NN |-radi . e -
d ds wh_erep_ is _the unknown variabledgpth Ol’.radu), the sub- _
do NN | radii_ dz— script ¢ indicates the real value of the variable, and subscript
ds (c) r indicates the value reconstructed by the neural network. Th
results for the configuratiod'l, C2 and C'3 are presented
(b) on Table I. As all the techniques apply similar mechanism
to reconstruct thelepth their error are also very similar, as
Fig. 2. Three neural network configurations employed in paper. (a) INdicated in the second column of Table I. The main differenc

is in the reconstruction of theadii for which the technique
proposed in this paper has shown an improvement of at least
7.1% when compared witlC'l and C2.

One network used to calculate simultaneously #h@th and radii given
di, do and ds, called here ConfiguratiorC'l. (b) Two networks (2)
applied in parallel to calculate independently thepth and radi: given
di, d2 andds. (c) The configuration proposed in this papér3j in which,
the depth is calculated usingly, d2 andds and theradi: are calculated in
a second step (asynchronously) using also the calcutatpth. TABLE |

RESULTS CONSIDERING THE THREE CONFIGURATIONS OF THEEURAL

NETWORKS STUDIED IN THIS PAPER

network with multiple outputs, called her€1, calculates

simultaneously thelepth and radii given di, d» and ds. Config‘i”a“c’” E’“gg%’th) ETS%‘%”)
The parallel networks, called he¢&, calculate independently 02 5.7% 13.4%
each output given the measured variabies d> andds. In C3 5.7% 5.8%

our experiments it was noticed that having the information
of the depth, the prediction of theradii was substantially
improved. Considering this fact, in this paper we propose to V. CONCLUSIONS
use an asynchronous training as presented in Fig. 2(c). Thispig paper has presented a simple structure to improve
configuration, called heré€'s, first calculates the depth usingihe characterization of inclusions using neural networAs.
the measured variablés, d, andd; and then calculatesidii  gynchronous model was applied to train the network used
usingd;, d andd; and the predictedepth. to reconstruct theradii and it has delivered much better
outcomes when compared with the standard techniques. We
IV. RESULTS believe that this asynchronous model can be extended to a
A typical two-dimensional GPR data is simulated usinggcursive one, in such a way that the predictedi: can be
two antennas located above the dielectric slab. The FDTUSed to improve the prediction of thiepth and so on.
scenario used for the NN trainning consisted of one buried

inclusion in concrete that was modeled with a mean relative
electrical permittivity value of 6 and standard deviatical)( 1]
0.15 according to the equation:
[2]

(1)
The source type is a differentiated gaussian pulse with secers]
frequency of F = 900 MHz and significant energy between
0.3 and 2 GHz. In order to control the numerical dispersiqn
and provide a good discretization for the inclusions thdiapa
steps were chosen dsr = Ay = 6mm. (5]

The NN has been trained with a set of different inclusions
examples, constructed by varying thedi: in the range
[0.02 +0.1] m according to the ruleadii = 0.02 + ¢ x 0.001,
1 = 0,..,80, with ¢, in the range[l + 10], according to the
ruee. =1+ix1,i=0,..9, o in the rangel0 + 4000]
S/m according to the ruler = 0+ ¢ x 500, ¢ = 0,...,8
anddepth in the rang€0.05 + 0.25] m according to the rule
depth = 0.05 + 14 x 0.025, i = 0,...,9 where 75% of these
samples were used as a training set aath to validate the
methodology.

€ = 6 + sd - (random).

(6]
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