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Abstract— This paper presents the use of the Particle Swarm
Optimization for the identification of Jiles-Atherton model pa-
rameters. This approach is tested on two magnetic materials :
NO 3% SiFe and NiFe 20-80. Results are compared with those
obtained with a direct search method. Experimental validations
are also presented.

I. I NTRODUCTION

The modelling of some electromagnetic devices requires to
take into account an accurate behavior representation of the
magnetic materials (static hysteresis law). The desciption of
magnetization process based on Jiles-Atherton (J-A) theory
[1] is usualy used because it can be easily implemented.
Moreover the J-A model requires few memory storage and
its implementation uses only five parameters. However, the
identification of these parameters is based on an iterative
procedure [2] which may introduce convergence problems.
Indeed this classic procedure is very sensitive to initial values
of parameters chosen as starting point for the optimization.
Therefore new methods such as Simulated Annealing Method
[3] or Genetic Algorithm [4] have been recently introduced.
This paper presents another heuristic method, the Particle
Swarm Optimization (PSO), in the aim to bring another solu-
tion. This method is based on a socio-cognitive theory contrary
to the genetic algorithm method based on a natural selection:
there is no elimination of individual of the population so there
is less risk to exclude a good solution.

II. I MPLEMENTATION

A. J-A Model

The following form of J-A equations are considered : [5]
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where :

• Man is the anhysteretic magnetization provided by the
Langevin’s equation
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• He is the Weiss’ effective field :He = H + αM

• Mirr is the irreversible magnetization component defined
by :
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α, a, c, k and Ms are the parameters of the model where
a is a form factor,c the coefficient of reversibility of the
movement of the walls,Ms the saturation magnetization,k and
α represent the hysteresis losses and the interaction between
the domains respectively.

B. PSO Process

The PSO is an adaptative algorithm based on a social-
psychological analogy [6]. Each particle i of the swarm is
defined as a potential solution to a problem in a five di-
mensional space. This particle i is associated to its position
xi = (αi, ai, ci, ki,MSi). Each particle has a position (5) and
a velocity (4) (their values are randomized initially).

The Fitness function for a particle i is defined as the squared
error between the measured values and the calculated ones
(obtained by considering the parameters associated to the
particle i) of a static hysteresis loop.

The position with the lowest fitness score in each iteration is
defined to be the entire swarm’s global best (gbest) position.
In addition, each particle keeps its best position that it has
visited, known as the particle’s personal best (pbest).

The particle motions are governed by the following rules
which update particle positionsxi with variation’s step for
each parametersvi = (vαi

, vai
, vci

, vki, vMSi
):
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wherexi is the current position of particle i,pbest is the best
position obtained by particle i,gbest is the swarm’s global
best position,vi is the velocity of particle i,ω is an inertia
weight,p1 andp2 are social and cognitive parameters,rd1 and
rd2 are two random numbers between 0-1 andt is the current
iteration.

A variable neighbourhood operator is also introduced [7] in
order to improve the convergence of this method. During the



initial step of the optimisation, the neighbourhood of the par-
ticle is reduced to itself. As the number of iterations increases,
the neighbourhood will be gradually extended to include all
particles. In other words, the variablegbest in the classical
PSO algorithm is replaced bylbest (i.e. local best solution)
where a local neighbourhood size is gradually increased. The
neighbourhood of a particle is defined by the minimum of
Euclidian norm for the five normalized parameters

In addition, the value of the inertia weightω in the PSO
is also gradually fitted (6) in order to improve the accuracy
during the final steps of optimisation.

ω =
(ωstart − ωend) × (Maxiter − Iter)

Maxiter

+ ωend (6)

where ωstart and ωend are initial and final values for the
random inertia weight.

III. R ESULTS

This method is used to obtain the five parameters of J-A
model for the magnetization representation of two different
magnetic materials.

A. NO 3% SiFe material

The table I compares the different parameter values obtained
by considering the PSO algorithm and a Direct Search Method
(DSM) : the fminsearch function of MATLAB.

TABLE I

OPTIMIZATION RESULTS

Parameters PSO Direct Search

α 8.8448e-5 7.755e-5
a 38.3704 35.483
c 0.13568 0.22365
k 50.7865 56.968

Ms 1.1163e6 1.112e6

In the table II, the error is calculated in several characteristic
points :B 1

2

(respectivelyB
−

1

2

) is a point on the descending
part of the B-H major loop, whose H-coordinate is equal to
0.5Hmax (respectively−0.5Hmax) andB1M is a point on the
first magnetization B-H curve, whose H-coordinate is equal to
0.25Hmax.

TABLE II

ESTIMATION ERRORS FOR A MAJOR HYSTERESIS LOOP

Characteristic point PSO error Direct Search error

Hc 0.3% 0.8%
Br 0.6% 6.2%
B 1

2

0.1% 0.52%

B
−

1

2

0.3% 1.8%

B1M 4.1% 42%

The PSO allows to obtain accurate results concerning the
determination of the first magnetization (B1M ) contrary to a
DSM.

B. NiFe 20-80 material

The DSM for this material leads to negative values ofα and
c (not physical). However the PSO suits. Results are reported
in table III

TABLE III

OPTIMIZATION RESULTS AND ESTIMATION ERRORS FOR MAJOR

HYSTERESIS LOOP

Parameters PSO Points PSO error

α 5.1508e-5 Hc 33%
a 15.7511 Br 0.6%
c 0.82557 B 1

2

1.2%

k 5.3407 B
−

1

2

0.8%

Ms 9.192489e5 B1M 8.3%

The 33% error obtained forHc is not significant of the
accuracy of the method because the material has a very small
coercivity field (less than 1 A/m).

IV. CONCLUSION

PSO has been applied with success to estimate the J-A
model parameters.Two tests have been presented here ; all
other tests we did show that this method is not influenced by
initial random values, doesn’t have any convergence problem,
and is anyway more accurate than DSM.

In the near future, we will go further into the notion
of neighbourhood, and give comparisons with the genetic
algorithms in terms of accuracy, calculation time and easiness
of implementation.

In some cases, it may be more important to have a good
accuracy for minor loops than for the first magnetisation curve
: we plan to modify the fitness function to allow to give more
weigh to the shape of minor loops on the JA coefficients.
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