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Abstract⎯ Skin and proximity effects are calculated in both ac-
tive and passive conductors via a subproblem finite element 
method based on a perturbation technique. A limit problem is 
first solved by considering perfect conductors via appropriate 
boundary conditions. Its solution then gives the source for eddy 
current perturbation subproblems in each conductor with its ac-
tual conductivity, each one requiring its own mesh. The proposed 
method accurately determines the current density distributions 
and ensuing losses in conductors of any shape in both the fre-
quency and time domains, which overcomes the limitations of the 
impedance boundary condition technique.  

I. INTRODUCTION 
A precise consideration of the skin and proximity effects in 

conductors is usually important for the sources themselves as 
well as for their surrounding area. This allows an accurate cal-
culation of the ensuing Joule losses in the conductors them-
selves (either inductors or external conducting pieces, in par-
ticular inductively heated pieces), as well as an accurate loca-
tion of the current density distributions with respect to the in-
fluenced regions. 

For significant skin and proximity effects, impedance 
boundary conditions (BCs) [1] defined on the conductor 
boundaries are an alternative to avoid meshing their interior. 
Such conditions are nevertheless generally based on analytical 
solutions of ideal problems and are therefore only valid in 
practice far from any geometrical discontinuities, as edges and 
corners. They are also generally limited to frequency domain 
and linear analyses. In this contribution, a method is developed 
to overcome the limitations of impedance BCs, allowing con-
ductors of any shape to be considered not only in the fre-
quency domain but also in the time domain. The magnetic vec-
tor potential FE magnetodynamic formulation is used. 

A limit eddy current FE problem is first solved by consider-
ing perfect conductors. This can be done via appropriate con-
ditions on the conductor boundaries, that can serve as well for 
expressing the circuit relations of active conductors linking 
their voltages and currents. The solution of the limit problem 
then gives the source for eddy current FE perturbation sub-
problems in each conductor with its actual finite conductivity. 
Each of these problems requires an appropriate volume mesh 
of the associated conductor and its surrounding region. Such a 
decoupling allows the solution process to be lightened. 

II. THE PERTURBATION  
FROM PERFECT TO NON-PERFECT CONDUCTORS 

A. The strong formulations 
Maxwell equations are to be solved in a bounded domain Ω, 

with boundary ∂Ω (possibly at infinity), of the 2-D or 3-D 
Euclidean space. The eddy current conducting part of Ω is de-
noted Ωc and the non-conducting one ΩcC, with Ω = Ωc ∪ ΩcC. 
Massive conductors belong to Ωc. 
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The equations and relations governing the magnetodynamic 
problem in Ω are 
 curl h = j ,  curl e = – ∂t b ,  div b = 0 , (1a-b-c) 
 b = µ h ,   j = σ e , (2a-b) 
where h is the magnetic field, b is the magnetic flux density, e 
is the electric field, j is the electric current density (including 
source and eddy currents), µ is the magnetic permeability and 
σ is the electric conductivity. In the following, the subscripts u 
and p will refer to unperturbed and perturbed quantities, re-
spectively. 

Instead of directly solving the eddy current problem with 
the actual conductivity of some conductors, a so-called unper-
turbed or limit problem is first defined in Ω by considering 
some conductors Ωc, i (i is the conductor index) as being per-
fect, i.e. of infinite conductivity. This results in a zero skin 
depth and thus in surface currents. The interior of the conduc-
tor regions Ωc, i can thus be extracted from the studied domain 
Ω and treated via a BC fixing a zero normal magnetic flux 
density on their boundaries ∂Ωc, i.  

The consideration of the actual conductivity of the con-
cerned conductors, these defining the perturbing region 
Ωc, i ⊂ Ωc, will further lead to field distortions. The perturbed 
eddy current problem focuses thus on Ωc, i and its neighbor-
hood, their union Ωp being adequately defined and meshed 
will serve as the studied domain. 

The perturbation given by the change of conductivity of the 
conducting region Ωc, i alters the distribution of the current 
density and magnetic field. The fields in these conductors are 
not surface fields anymore but penetrate them. 

Particularizing (1) and (2) for both the unperturbed and per-
turbed quantities, and subtracting the unperturbed equations 
from the perturbed ones, a perturbation problem is defined in 
Ωp (initially in Ω) [2], [3], [7]. Expressing the resulting equa-
tions in terms of the field distortions h = hp – hu and e = ep –
 eu, one gets 
 curl h = j ,  curl e = – ∂t b , (3a-b) 
 b = µp h + bs ,   j = σp e + js , (4a-b) 
where the so-defined volume sources bs and js are obtained 
from the unperturbed solution as 
 bs = (µp – µu) hu  in Ωc, p , (5) 
 js = (σp – σu) eu  in Ωc, p . (6) 
These sources only act in the regions where a change of con-
ductivity or permeability occurs. The considered boundary 
conditions neglect the distortions at a certain distance from 
Ωc, i. For convenience, the perturbation problem does not take 
account of the geometrical and material details of the initial 
unperturbed problem. For close positions of source and per-
turbing regions, a more accurate solution could be obtained via 
an iterative procedure to calculate successive perturbations in 
each region, not only from the initial source region to the per-
turbing one but also from the latter to the former. At the dis-
crete level, the meshes of both unperturbed and perturbation 



 
 
problems can then be significantly simplified, each problem 
asking for mesh refinement of different regions. 

The source bs (5), determined from the known field hu, is it-
self also zero in Ωc, i. The source current density js (6) is to be 
obtained from the unperturbed electric field eu, with σu → ∞ 
and σp finite in Ωc, i. The quantities involved in (6) are, on the 
one hand, σu eu being the surface current density on ∂Ωc, i, 
and, on the other hand, σp eu actually being null in Ωc, i be-
cause eu is only defined on ∂Ωc, i. Consequently, one has to 
consider js as a surface source current density, i.e. 

s u uσ= −j e  on ∂Ωc, i. 
B. The weak formulations 
The eddy current problem is defined in Ω with the magnetic 

vector potential formulation [4], expressed in terms of a mag-
netic vector potential a and an electric scalar potential v, i.e. 
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The surface integral term on Γh in (7) accounts for the natural 
boundary or interface conditions. It will be shown to be of key 
importance in our developments. 

The BC on the perfect conductors can be expressed via the 
definition of a surface scalar potential uu for the primary un-
known au [5]. In a 2D model, with perpendicular currents, this 
amounts to define a floating (constant) value for the perpen-
dicular component of au for each conductor. 

The unperturbed formulation is of the form (7) with all the 
quantities with the subscript u. The surface integral term on 
∂Ωc, i can be shown to be the total current I i flowing on ∂Ωc, i 
for the test function relative to uu, which enables the coupling 
with electrical circuits. 

The skin and proximity effects in each conductor Ωc, i have 
then to be modified and adapted for their actual conducting na-
ture. This is done via the weak formulation of the perturbation 
problem of a form similar to (7). Each of its surface integral 
terms related to ∂Ωc, i is actually known from the unperturbed 
solution. It will be shown to be determined in a natural weak 
way from a volume integral coming from the unperturbed 
problem. 

III. APPLICATION AND DISCUSSIONS 
A core-inductor system is considered as a test problem, 

gathering both active and passive conductors. Holes in the 
core are considered in order to point out the effect of several 
corners.  

Fig. 1 shows the eddy current distribution along the core 
surface for particular working conditions presenting a signifi-
cant skin effect. Fig. 2 highlights the relative error on this cur-
rent density and the associated Joule power density made by 
the impedance BC technique versus the sub-domain FE ap-
proach. The error significantly increases in the vicinity of the 
conductor corners: it exceeds 50% for the Joule power density 
and 30% for the current density in the smallest plane portions 
between holes. This affects the total losses accuracy when the 
size of the conductor portions decreases. The error with the 
impedance BC technique is shown to be significant up to a dis-
tance of about 3 δAl from each corner, whereas a good accu-
racy is only obtained beyond this distance. Other results will 
be presented and discussed regarding the current distributions 
in both the inductor and the core for different working condi-

tions. The developed technique will be validated and its main 
advantages versus the impedance BC technique will be pointed 
out. 

Once calculated, the source limit solution can be used in 
each subproblem not only for a single high frequency signal 
but for several signals. This allows efficient parameterized 
analyses on the signal form and the electric and magnetic char-
acteristics of the conductors in a wide range, i.e. on all the pa-
rameters affecting the skin depth. Nonlinear analyses can also 
benefit from this. 
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Fig. 1. Eddy current density along the core surface for the conventional FE so-
lution, the perturbation technique and the impedance BC technique. 
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Fig. 2. Relative error on the current density and the associated Joule power 
density along the core surface made by the impedance BC technique versus the 
sub-domain FE approach. 
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